

X-ray based spectroscopy for the study of perovskite photovoltaic materials

Håkan Rensmo

Joint French-Swedish school on X-rays and Neutrons techniques for the study of functional materials for energy

Molecular and Condensed Matter Physics

Maria Hahlin, Ida Källquist, Dibya Phyal, Bertrand Philippe, Felix Masel, Fredrik Lindgren, Sebastian Svanström, Gabriel Man, Konstantin Simonov, Soham Mukherjee Former members: Rebecka Lindblad, Susanna Kaufman.Eriksson

CMD (UU) Erik Johansson, Gerrit Boschloo, Jesper Jacobson, KTH Ute Cappel, James Gardner , Lichen Sun, Lars Kloo SU, Michael Odelius ÅABC (UU) Kristina Edström, Daniel Brndell, Cambridge: Sam Stranks EPFL: - Michael Saliba, Anders Hagfeldt Bessy: Mihaela Gorgoi, UBjL, Föhlish, Ovsyannikov, Giangrisostomi, Bidermane, Leitner, Molecules **Functional** and Materials Liquids X-ray based methodology PHOTON SCIENCE

Ratter

- Photoelectron spectroscopy (PES)
- PV materials (Solar Cells)
- EXAMPLES (not all PV materials)
 - Molecular system
 - Crystal system
 - Interface structure
 - Energy Matching
 - Orbital composition
 - Dynamic

Electronic structure

Photoelectron spectroscopy (PES) XPS,PES,UPS,HAXPES,SOXPES X-axis

UPPSALA UNIVERSITET

photoelectron

$$E_{\text{binding}} = h\nu - E_{\text{kinetic}}$$

PES

Energy

PES, **Y-axis**

$I_a \propto \rho_a * \mathbf{H} * \sigma_a(h\nu,\theta) * exp[-z/\Lambda(E_k)]$

PES, **Y-axis**

$I_a \propto \rho_a * \sigma_a(h\nu,\theta) * exp[-z/A(E_k)]$

J. Yeh and I. Lindau, *At. Data Nucl. Data Tables*, 1985, **32**, 1–155

PES, **Y-axis**

"Surface" sensitive

$I_a \propto \rho_a * \sigma_a(h\nu,\theta) * exp[-z/A(E_k)]$

 $E_{kin} = hv - E_b$

K inetic energy (eV)

Solar cells (very quickly)

- Solar cell: Light \Rightarrow electrical energy
- Absorb light and separate charges
- Considered expensive (also energy expensive)

- New types
 - Molecular
 - Organic
 - Thin film
 - Perovskite

Keyfunction:

Light-absorption (electron excitation) Charge-separation (interface)

The challenge!!

UPPSALA UNIVERSITET

Photoelectron spectroscopy of DSC solar cell materials

Understand key interfacial processes in conversion

10µm*

3D design

Interface structure

Electronic structure

Interface

structure

Where are the atoms?

Where are the electrons?

How to facilitate efficient charge transfer

How do electrons and atoms move during the conversion process.

Johansson EMJ; Lindblad R; Siegbahn H; Hagfeldt A; Rensmo H. Chemphyschem. 2014;15(6):1006-17

XPS, PES, UPS, HAXPES, SOXPES X-axis

UPPSALA UNIVERSITET

Key interface – structure Light to electrical energy conversion using dye molecules

Interface

 $I_a \propto \rho_a * \sigma_a(h\nu,\theta) * exp \left[-z/A(E_k)\right]$

Key interface – structure Light to electrical energy conversion using dye molecules

Interface

Core levels

Energy matching

 $I_a \propto \rho_a * \sigma_a(h\nu,\theta) * exp[-z/A(E_k)]$

PES measures Partial Density of States (PDOS)

$I_a \propto \rho_a * \sigma_a(h\nu,\theta) * exp[-z/A(E_k)]$

BL 41, BLI 411 and KMC1

Carbon or Nitrogen, 2p

Photon energy

Valence level at 2800 eV

Electron spectroscopy of solar cell materials Perovskite solar cell materials

Understand key interfacial processes in conversion

Interface

structure

Where are the atoms?

Where are the electrons?

How to facilitate efficient charge transfer

Dynamics

How do electrons and atoms move during the conversion process.

2D/3D design

Interface structure

Electronic structure

Goal 1: Explore, at the atomic level, the limitations of conversion due to charge dynamics. Goal 2: Define design rules for efficient energy conversion. Indoor applications.

Synthesis

UPPSALA UNIVERSITET

MA

Figure 6 from Recent progress in efficient hybrid lead halide perovskite solar cells Jin Cui et al 2015 Sci. Technol. Adv. Mater. 16 036004 doi:10.1088/1468-6996/16/3/036004

UPPSALA UNIVERSITET

Examples: Lead-based halide perovskite

KRICT/ UNIST raunhofer-ISI

HAXPES and SOXPES

Multi cation (K⁺, Cs⁺, MA⁺, FA⁺) mixed perovskite

(Also: attempts to replace Pb to Bi, Sn, Sn, Ag)

$FA_xMA_{1-x}Pb(I_{1-x}Br_x)_3$

Interface structure

UPPSALA UNIVERSITET

Investigation of a mixed perovskie (FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})₃)

- (a) -10% Pbl₂
- (b) Stoichiometric (0%)
- (c) +10% Pbl₂

I/Pb ratio of 2.55 is expected

(a) l/Pb i	ntensity ratio				
hv [eV]	Probing depth [nm]	-10 %	0	+10 %	Pbl ₂
4000	18	2.49	2.36	2.28	1.96
2100	11	3.35	3.08	2.90	
758	5	4.36	4.22	3.82	2.03

Validation of the quantification process with a reference

100 00 "Universal curve" C1s 10 E_b=285 eV 0 IM FP (nm) $E_{k} = 1202 \text{ eV}$ 0,1 0,1 10 100 1000 10000 1 Kinetic energy (eV)

Jacobsson et al. JACS 2016, 138, 10331-10343

$FA_xMA_{1-x}Pb(I_{1-x}Br_x)_3$

Interface structure

Investigation of a mixed perovskie (FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})₃)

- (a) -10% Pbl₂
- (b) Stoichiometric (0%)
- (c) +10% Pbl₂

Interpretation of the data

Excess vs deficiency of PbI, in perovskites

Jacobsson et al. JACS 2016, 138, 10331-10343

EXCESS Pbl₂ FAVOURS PHOTOCURRENT AND EFFIVIENCY (minimize organic layers that prevent charge transport)

TiO₂/ CH₃NH₃Pbl₃ band alignment

Energy matching

MAPbl₃

$MAPb(I_{1-x}Br_x)_x$

What can we learn from these measurements???

Lindblad et al. J. Phys. Chem. Lett. 2014, 5, 648-653

TiO₂/ CH₃NH₃Pbl₃ band alignment

Energy matching

MAPbl₃

$MAPb(I_{1-x}Br_x)_x$

Lindblad et al. J. Phys. Chem. Lett. 2014, 5, 648-653, J Phys Chem C. 2015;119(4):1818-25

XPS gives Partial DOS (not DOS)

Orbital composition

 $FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})_3$

Measurements at high energy mainly measure the PbX₆-unit

XPS gives Partial DOS (not DOS)

Orbital composition

Odelius (Stockholm University)

The top of the valence band has Pb6s - 15p (or Br4p) anti - bonding character. Defect tolerant. Philippe B; et sl. J Phys Chem C. **2017**;121(48):26655-66

PES measurements with laser illumination

Property	Facility	Technique
EFFICIENT DETECTION	UBjL @ Bessy 2	PES using ArTOF – LowDose-measurements, ps time resolution
X-rays		 X-rays and pump laser on same

- X-rays and pump laser on same spot on sample
- Measure spectra using X-rays
- Follow changes induced by laser

Following moving atoms/charges Light induced changes

Following moving electrons

Property	Facility	Technique
TIME RESOLVED	HELIOS (HHG @ UU)	50 fs, 20-70 eV, time-resolved PES and bandmapping

How can one control thermalisation ?

Cappel et al. PCCP, 2016, 18 21921-21929

First results

UPPSALA UNIVERSITET

Dynamics

What can we observe?

First results

UPPSALA UNIVERSITET

Following moving atoms/charges Voltage induced changes

Property	Facility	Technique
ENVIRONMENTS I	HAXPES @ BESSY, SOLEIL, DIAMOND, DESY	Real interfaces during operations

The hard X-ray allow penetration Through the interface

How is the electric field distributed, what is the role of the electrons/atoms.

Following moving atoms/charges Voltage induced changes

Property	Facility	Technique
ENVIRONMENTS I	HAXPES @ BESSY, SOLEIL, DIAMOND, DESY	Real interfaces during operations

618

617

617

Foundation – X-ray based spectroscopy Methodology development

X-ray based spectroscopy – e.g. Photoelectron spectroscopy

X-axis: Energy levels - element and chemical sensitivity at an atomic level.

Explore the enormous development of new sources

Challenge: relevant samples

INTERFACES

Development of new/improved analytical tools (HAXPES, SOXPES)

X-ray based methodology Our main current development projects

Property	Facility	Technique
TIME RESOLVED	HELIOS (HHG @ UU) UBjL @ Bessy 2	50 fs -50 ps, 20-70 eV, time-resolved PES and bandmapping
EFFICIENT DETECTION	UBjL @ Bessy 2	PES using ArTOF – LowDose-measurements, ps time resolution
ENVIRONMENTS I	HAXPES @ BESSY, SOLEIL, DIAMOND, DESY	PES on real buried interfaces during operations. Surface bulk. PDOS.
ENVIRONMENTS II	SPECIES, HIPPIE @ MAX IV	High pressure PES, RIXS on the Li edge
HIGH RESOLUTION	VERITAS @ MAX IV	RIXS > 30 K resolving power

`1/3 Ru4d 2/3 NCS

Interface structure

Example on atomic level understanding Next generation – perovskite solar cells

PhD, Postdoc positions

www.uu.se/jobb/

hakan.rensmo@physics.uu.se