Interaction of X-rays and Neutrons with Matter

Jean Daillant

Joint French-Swedish School on X-rays and Neutrons Techniques for the Study of Functional Materials for Energy

Lund, 13 May 2019
• Provide you with a simple conceptual framework to understand synchrotron and neutron experiments.

• Give an overview of the methods which will be discussed during the week and introduce vocabulary.

• Give orders of magnitude.

Introduction
Production of X-rays and Neutrons
- Synchrotron Radiation
- Free Electron Lasers
- Neutron Sources

Interactions of X-rays and Neutrons with Matter
- Photons and Neutrons
- Fundamentals of Scattering

Elastic Scattering
- Elastic Scattering in the Born Approximation
- Scattering Lengths
- Reflection from Surfaces
- Refractive Index

Inelastic Scattering, Spectroscopy
- Compton Scattering
- Absorption
- Photoelectric Effect - Photoemission
- Fluorescence
- Absorption Spectroscopy
- Resonant processes
- Neutron spin-echo
Production of X-rays and Neutrons
Radiation by a moving charge: \(E = \frac{q}{4\pi \varepsilon_0 c^2 R} \nabla \times \vec{n} \times \vec{n} \times \vec{a} \)

\[
E = \frac{q \sin \theta}{4\pi \varepsilon_0 c^2 R}
\]

\[
\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}
\]

- Emission in a cone \(\approx 1/\gamma \), with \(\gamma = E/m_e - c^2 \); \(m_0 c^2 = 511 \text{ keV} \);
 for \(E = 2.75 \text{ GeV} \), \(\gamma = 5382 \), \(1/\gamma = 0.186 \text{ mrad} = 0.01\text{deg} \)
- Polarization

Production of X-rays and Neutrons Synchrotron Radiation 4 / 40
Relativistic effects

- Doppler effect

\[\lambda = (1 - \frac{v}{c}) \lambda_0 = \frac{1 - \beta^2}{1 + \beta} \lambda_0 \approx \frac{\lambda_0}{2\gamma^2} \]

as \(\beta \approx 1 \).

- X-rays!
- Magnetic field: \(B_z = B_0 \cos(2\pi x/\lambda_0) \)
- Lorentz force:
 \[\gamma m_0 (dv_y/dt) \approx ev_0 B_0 \cos(2\pi x/\lambda_0) \]
- Trajectory:
 \[y = -K\lambda_0/(2\pi\gamma) \cos(2\pi x/\lambda_0) \]
 with \(K = EB_0 \lambda_0/(2\pi m_0 c) \) the undulator strength.

With \(E=2.75\text{GeV} \), \(B_0=1\text{T} \), \(\lambda_0=20\text{mm} \), \(K=1.9 \), the maximum deviation of the \(e^- \) beam is 1.1\(\mu \text{m} \).

Over \(\lambda_0 \), extra distance \(\delta L = \int_0^{\lambda_0} \left(\sqrt{1 + (dy/dx)^2} - 1 \right) dx = K^2 \lambda_0/(4\gamma^2) \)

Time needed by the \(e^- \) to cover a period is larger than time needed by the photon by:
\[\delta t = (\lambda_0 + \delta L)/v_0 - \lambda_0/c = \lambda_0/(2\gamma^2 c)(1 + K^2/2). \]

- Harmonics:
 \[\frac{\lambda_0}{2n\gamma^2} \left(1 + \frac{K^2}{2} \right) \]
Synchrotron Radiation Facilities

Production of X-rays and Neutrons
\[I \propto N_{e^-}^2 \] + LCLS, SACLA, Pohang...
Fission:

- Capture of a neutron by a “fissionable” nucleus; exothermal chain reaction.
- A few ($\propto 1$) neutron per event; mainly evaporation from fission fragments.

Spallation:

- High energy p^+ (1 GeV) hits a heavy metal target (e.g. Hg).
- $\propto 10$ neutrons per p^+; intra- and inter-molecular cascade followed by evaporation.
- Naturally pulsed sources.

National Nuclear Data Center, BNL

G.J. Russell, ICANSXI, Tsukuba, 1990
https://www.iucr.org/resources/commissions/neutron-scattering/where-neutrons
X-ray and Neutron Interactions with Matter
Neutron:
2 down quarks, 1 up quark
Mass $1,675 \times 10^{-27} \text{kg} \approx 940 \text{ MeV}/c^2$
No charge
Spin 1/2

Photon:
Quantum of electromagnetic field and carrier of electromagnetic force
Zero mass, travels at the speed of light
Polarization
Wave-particle duality

Photons:

Maxwell equations in a vacuum:

\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},
\]
\[
\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}.
\]

→ Propagation equation:

\[
\nabla \times \nabla \times \mathbf{E} + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\nabla^2 \mathbf{E} + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0
\]

Solution: Plane waves

\[A_0 \exp i(\omega t - k_0 x)\]

Wavelength \(\lambda = 2\pi/k_0 \)

Momentum \(p = h/\lambda = E/c \)

Energy \(E = hc/\lambda = \hbar \omega = h\nu \)

Neutrons:

Schrödinger equation:

\[i\hbar \frac{\partial |\psi\rangle}{\partial t} = \mathcal{H}|\psi\rangle; \quad \mathcal{H} = \frac{p^2}{2m}; \quad p = \frac{\hbar}{i} \nabla \]

Stationary solution:

\[-\frac{\hbar^2}{2m} \nabla^2 \psi = E\psi.\]

Solution \(A_0 \exp i(kx - \omega t) \)

\(E = \hbar \omega = h\nu; = \frac{\hbar^2 k^2}{2m} \)

\(\lambda = h/p \) (de Broglie); \(p = \hbar k\sqrt{2mE} \)

“Thermal neutrons”

300K; \(k_B T = 4.1 \times 10^{-21} J = 0.0256 \) eV

\(\lambda = h/\sqrt{2mE} \approx 1.78\text{Å}; \)

\(\nu = h/m\lambda \approx 2.22 \text{km.s}^{-1} \)

→ Time-of-flight \(\equiv E \)
Two fundamental questions

Exchange of energy?
- **No**: “Elastic scattering”. Information on distribution of matter only.
- **Yes**: “Inelastic scattering”: also information on the energy distribution in the sample (whatever it is).

Scattering ↔ Spectroscopy

Coherent or incoherent process?
- **Yes**: Possibility of interferences. Structural information can be recovered.
- **No**: No possibility of interferences, structural information is lost.
The differential scattering cross-section $d\sigma/d\Omega$ is the intensity scattered per unit solid angle in the direction k_{sc} per unit incident flux in the direction k_{in}.

$$I = \Phi_0 \int_{\Omega} \frac{d\sigma}{d\Omega} d\Omega$$

Dimension of an area.
Elastic Scattering
Plane wave: $A \exp i(\omega t - \mathbf{k} \cdot \mathbf{r})$
Phase shift: $(\mathbf{k}_{sc} - \mathbf{k}_{in}) \cdot \mathbf{r}$

$$\frac{d\sigma}{d\Omega} = \left| \sum_{j} b_{j} e^{i\mathbf{q} \cdot \mathbf{r}_{j}} \right|^{2} = \sum_{j} \sum_{k} b_{j} b_{k} e^{i\mathbf{q} \cdot (\mathbf{r}_{j} - \mathbf{r}_{k})} = b^{2} \left| \int d\mathbf{r} \rho(\mathbf{r}) e^{i\mathbf{q} \cdot \mathbf{r}} \right|^{2}$$

ρ: density of scatterers

b_{j}: scattering lengths

b: scattering length density

For x-rays: $b = r_{e} = (e^{2}/4\pi\epsilon_{0}m_{e}c^{2}) = 2.810^{-15} m$, classical radius of the electron

For neutrons, $b \sim \text{fm} (10^{-15} m)$ depends on atom, isotope, can be > 0 or $< 0 \rightarrow$ isotopic substitution ($D_{2}O, H_{2}O$)
Low atomic numbers, $\omega \gg$ atomic frequencies \rightarrow free e^-

$$m_e \frac{dv}{dt} = -eE e^{i\omega t}$$

$v = i\omega x$

For a $e^{i\omega t}$ time dependence of the electric field

$$v = (ie/m_e \omega)E e^{i\omega t}$$

\rightarrow oscillating dipole $p = -ex = -\frac{e^2}{m_e \omega^2} E e^{i\omega t}$

$$E_{sc} = \frac{-p \omega^2 e^{-ik_0 r}}{4\pi \epsilon_0 c^2 r} \sin \theta \ \hat{e}_{sc}$$

Intensity scattered in a unit solid angle $r^2 |E|^2$.

$$b = \frac{e^2}{4\pi \epsilon_0 mc^2} (\hat{e}_{in} . \hat{e}_{sc})$$

$$r_e = e^2/4\pi \epsilon_0 mc^2 = 2.818 \times 10^{-15} m \text{ classical electron radius (Thomson radius).}$$

Note: with $\omega = 2\pi c/\lambda$, $p = -(\epsilon_0 \lambda^2 r_e / \pi) E$.

$$m_{p^+} \approx 1836 \times m_e$$
Fermi pseudo-potential (Strong interaction)

\[V(r) = (2\pi \hbar^2 / m) b \delta(r) \]

\(b \) depends on isotope and spin \(\rightarrow \) isotopic substitution

\[b = b_c + \frac{1}{2} b_n \mathbf{l} \cdot \mathbf{\sigma}, \]

describes the interaction between the neutron spin and the nuclear magnetic moment. Eigenvalues of \(\mathbf{l} \cdot \mathbf{\sigma} \) are \(\mathbf{l} \) for \(J = \mathbf{l} + 1/2 \) and \(-(\mathbf{l} + 1) \) for \(J = \mathbf{l} - 1/2 \). With \(b^+ \) and \(b^- \) the corresponding scattering lengths,

\[
\begin{align*}
 b^+ &= b_0 + \frac{1}{2} b_n \mathbf{l} \\
 b^- &= b_0 - \frac{1}{2} b_n (\mathbf{l} + 1)
\end{align*}
\]
Anomalous scattering of x-rays

Classical description in an harmonic potential including damping:

\[md^2x/dt^2 = -m\omega_0^2 x - 2m\gamma dx/dt - eE. \rightarrow x(t) = -\frac{e}{m} \frac{E e^{-i\omega t}}{\omega_0^2 - \omega^2 - 2i\gamma\omega}. \]

Following the same procedure as before:

\[b = \frac{e^2}{4\pi\epsilon_0 mc^2} \frac{\omega^2}{\omega_0^2 - \omega^2 - 2i\gamma\omega} (\hat{e}_{\text{in}} \cdot \hat{e}_{\text{sc}}), \]

(1)

Similar to the full quantum calculation.

- FWHM = 2γ
- lifetime 1/γ (\(\Delta E \cdot \Delta \tau \approx \hbar\))
- For a typical natural width
 \(\approx 1\text{eV} \rightarrow \text{fs} (10^{-15}\text{s})\)
With different species in a solution:

\[
\frac{d\sigma}{d\Omega} = \Sigma_{\alpha} \Sigma_{\beta} b_{\alpha} b_{\beta} \langle \Sigma_{r_{i(\alpha)}} \Sigma_{r_{j(\beta)}} \exp ik(r_{j(\beta)} - r_{i(\alpha)}) \rangle \\
= N \left[\Sigma_{\alpha} c_{\alpha} b_{\alpha}^2 + \Sigma_{\alpha} \Sigma_{\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} (S_{\alpha\beta}(k) - 1) \right],
\]

with \(\alpha \) and \(\beta \) different chemical species of concentration \(c_{\alpha} \) and \(c_{\beta} \) and the first sum runs over their positions.

\(S_{\alpha\beta} \) is the partial structure factor of \(\alpha \) and \(\beta \). It is related to the partial distribution function \(g_{\alpha\beta}(r) \) via Fourier transform.

\[
g_{\alpha\beta}(r) = 1 + \frac{V}{2\pi^2 N r} \int dk (S_{\alpha\beta} - 1) k \sin(kr),
\]

with \(4\pi \rho_{\beta} g_{\alpha\beta}(r) r^2 dr \) being the probability of finding a \(\beta \) particle in a spherical shell of radius \(r \) and thickness \(dr \), knowing that there is an \(\alpha \) particle at origin.

\(\rightarrow \) The full collection of \(S_{\alpha\beta}(k) \) contains in principle all information about the structure of the solution.
The way to separate out the different $S_{\alpha\beta}(k)$ is to use isotopic substitution.

Weaker binding when surface charge decreases.
Note on Phase Retrieval

\[\frac{d\sigma}{d\Omega} = \sum_j \sum_k b_j b_k e^{iq \cdot (r_j - r_k)} \rightarrow \text{Absolute phase is lost.} \]

It can be recovered provided using appropriate constraints and iterative reconstruction algorithms provided the sample is coherently illuminated.

Young’s slits: path difference \(ax/D \). Fringes become invisible if \(a \approx \lambda d/\delta \) \(\rightarrow \) transverse coherence length. \(\lambda = 1\text{Å}, \delta = 10\mu\text{m}, d = 5\text{m} \rightarrow 25\mu\text{m}. \)
No correlation between an atom’s position and its isotope and/or spin state. Random distribution of isotopes and spin states. $b_i = \langle b \rangle + \delta b_i$, where $\langle \delta b \rangle = 0$.

$$\frac{d\sigma}{d\Omega} = \left| \sum_j b_j e^{i\mathbf{q} \cdot \mathbf{r}_j} \right|^2 = \sum_i \sum_j (\langle b \rangle + \delta b_i)(\langle b \rangle + \delta b_j) e^{i\mathbf{q} \cdot (\mathbf{r}_i - \mathbf{r}_j)}$$

$$= \langle b \rangle^2 \left| \sum_j e^{i\mathbf{q} \cdot \mathbf{r}_j} \right|^2 + N(\langle b^2 \rangle - \langle b \rangle^2)$$

$\langle \delta b_i \rangle = \langle \delta b_j \rangle \langle \delta b_i \rangle_{i \neq j} = 0$

$\langle \delta b_i \delta b_i \rangle = \langle b^2 \rangle - \langle b \rangle^2$ as $b = \langle b \rangle + \delta b_i$.

The coherent scattering length is the average and the incoherent scattering length the variance. Strong incoherent scattering with H.
Magnetic scattering (of neutrons)

Dipolar interaction of the neutron spin with the magnetic field created by the unpaired electrons of the magnetic atoms. This field contains two terms, the spin part and the orbital part.

\[V(r) = -\mu_n \cdot B = -g_n \mu_N \sigma \cdot B \]

- \(\mu \) magnetic moment of the electron;
- \(\mu_N = e\hbar/(2m_p) \) nuclear magnetic moment;
- \(g_n = 3, 8260855 \) Landé factor; \(B \) magnetic field produced by the atom.

\[f = \frac{2m}{\hbar} \mu \cdot M_\perp, \]

\(M_\perp \) transverse part of the atomic magnetization (projection of \(M \) in the plane \(\perp \) to \(q \)).

Note: \(e^- \) also has a 1/2 spin which can interact with the magnetic part of electromagnetic waves. One has

\[b_{mag} = -i\epsilon \left(\hbar \omega/m_{e^\pm} c^2 \right) \left[(e_{sc}^* \cdot \mathbf{T}_S \cdot \mathbf{e}_{in}) \cdot \mathbf{S} + (e_{sc}^* \cdot \mathbf{T}_L \cdot \mathbf{e}_{in}) \cdot \mathbf{L} \right], \]

where tensors \(\mathbf{T}_S, \mathbf{T}_L \) depend on scattering geometry. For 10keV photons \(\hbar \omega/m_{e^\pm} c^2 = 10/511 \approx 0.02 \) As only unpaired electrons contribute, magnetic scattering is \(\approx 10^7 \) of Thomson scattering.

<table>
<thead>
<tr>
<th>Class</th>
<th>Interaction</th>
<th>(\delta b) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Strong interaction</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Atomic magnetic dipole moment*</td>
<td>10.0</td>
</tr>
<tr>
<td>II</td>
<td>Spin–orbit (Schwinger)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Foldy</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Neutron electric polarizability</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Intrinsic electrostatic</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nuclear magnetic dipole moment*</td>
<td>0.005</td>
</tr>
<tr>
<td>III</td>
<td>Neutron electric dipole moment*</td>
<td>(\approx 10^{-8})</td>
</tr>
<tr>
<td></td>
<td>Neutron electric charge*</td>
<td>(\approx 10^{-10})</td>
</tr>
<tr>
<td></td>
<td>Weak interaction</td>
<td>(\approx 10^{-34})</td>
</tr>
</tbody>
</table>
\[
\frac{d\sigma}{d\Omega} = b^2 \rho_{\text{sub}}^2 \int dzdz' \int drdr' e^{i\mathbf{q}_\parallel \cdot (\mathbf{r}_\parallel - \mathbf{r}'_\parallel)} e^{iq_zz} e^{iqa} e^{iq_z'z'}
\]

\[
\frac{d\sigma}{d\Omega} = \frac{4\pi^2 Ab^2 \rho_{\text{sub}}^2 \delta(q_\parallel)}{q_z^2}
\]

with \(\int dr_\parallel e^{i\mathbf{q}_\parallel r_\parallel} = 4\pi^2 \delta(q_\parallel)\),

\(q_\parallel\) wave-vector transfer component in the surface plane, \(A\) illuminated area

Integrating over \(\delta\Omega = d\theta_{sc} d\psi = (2/k_0 q_z) dq_\parallel\),

and normalizing to the incident flux \((I_0/A \sin \theta_{in})\)

\[
R = \frac{I}{I_0} = \frac{16\pi^2 b^2 \rho_{\text{sub}}^2}{q_z^4} = \frac{q_c^4}{16q_z^4}
\]

Brewster angle 45°

Averaging over all possible orientations \(\rightarrow 1/Q^4\) Porod’s law of Small Angle Scattering.
X-rays → Maxwell Equations:

\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
\]

\[
\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \frac{\partial \mathbf{D}}{\partial t},
\]

\[\mathbf{D} = \epsilon_0 n^2 \mathbf{E} = \epsilon_0 \mathbf{E} + \mathbf{P}\]

Polarization of the medium \(\mathbf{P} = \rho_{el} \mathbf{p}\)

\[
n = 1 - \frac{\lambda^2 r_e}{2\pi} \rho_{el} \approx 1 - 10^{-6}
\]

Neutrons → Schrödinger equation:

\[
\left(-\frac{\hbar^2}{2m} \nabla^2 + \frac{2\pi \hbar^2}{m} \sum_i \rho_i b_i \right) \psi(r) = \mathcal{E} \psi(r)
\]

\(b_i\) scattering length density of nucleus \(i\) of density \(\rho_i\).

\[
n = 1 - \frac{\lambda^2}{2\pi} \sum_i \rho_i b_i
\]

→ Optical description
Total External Reflection

\[n = 1 - \delta - i\beta \]
\[\cos \theta_1 = n \cos \theta_2 \]
\[\theta_2 = 0 \text{ for } \theta_{\text{in}} \leq \theta_c = \sqrt{2\delta} \approx 10^{-3} \]

Total external reflection.

Wave exp \(i(\omega t - k_z z) \); \(k_z = n \sin \theta \).

Penetration depth \(1/(2 \mathcal{I} m k_z) \) with

\[
\mathcal{I} m(k_z) = \frac{1}{\sqrt{2}} k_0 \sqrt{[(\theta^2 - 2\delta i)^2 + 4\beta^2]^{1/2} - (\theta^2 - 2\delta)}.
\]
Inelastic Scattering Spectroscopy
Exchange of energy between x-rays or neutrons and matter

X-rays:
- Compton scattering.
- Absorption \rightarrow (N)EXAFS.
- Photoelectric effect. Photoemission.
- Fluorescence.
- Anomalous scattering / Resonant scattering.
- Inelastic scattering / Raman scattering.

Neutrons:
- Inelastic scattering of neutrons.
<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Energy</th>
<th>Wavelength</th>
<th>Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular rotations</td>
<td>1-50 meV</td>
<td>25µm - 1mm</td>
<td>0.1 - 10 THz</td>
<td>Far IR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(400-10 cm$^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular vibrations</td>
<td>50-500 meV</td>
<td>1-30 µm</td>
<td>10 - 100 THz</td>
<td>IR, Raman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4000-100 cm$^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonons</td>
<td>10-100 meV</td>
<td>0.01 - 0.1 µm</td>
<td>10 - 100 THz</td>
<td>IXS, INS</td>
</tr>
<tr>
<td>Magnetic excitations (magnons)</td>
<td>100meV-1eV</td>
<td>0.1-1. µm</td>
<td>10^{14} Hz</td>
<td>RIXS</td>
</tr>
<tr>
<td>Chemical shifts</td>
<td>~1eV</td>
<td></td>
<td></td>
<td>Photoemission</td>
</tr>
<tr>
<td>Band gap</td>
<td>1-10 eV</td>
<td>10 - 100 nm</td>
<td>10^{16}-10^{17} Hz</td>
<td>ARPES, RIXS</td>
</tr>
<tr>
<td>Electronic molecular transitions</td>
<td>10 -100 eV</td>
<td>~ 100 nm</td>
<td></td>
<td>UV-vis</td>
</tr>
<tr>
<td>Atomic core levels</td>
<td>1-100 keV</td>
<td>0.1 Å - 1nm</td>
<td>10^{17}-10^{19} Hz</td>
<td>X-rays (soft, hard)</td>
</tr>
</tbody>
</table>

INS: $E \sim 25$ meV; $\delta E/E \sim 10^{-1} - 10^{-2}$;

IXS: $E \sim 10$ keV; $\delta E/E \sim 10^{-7} - 10^{-8}$

- THz, IR: dipole fluctuations, bond vibrations, hydrogen bonds.
- UV: electronic transitions.
- Hard x-rays: scattering by almost free electrons.
Electron-photon collision

Conservation of energy and momentum:

\[p_1 = p_2 + p_e \]
\[p_e^2 = p_1^2 + p_2^2 - 2p_1 \cdot p_2 \cos \theta \]
\[p_1 c + m_e c^2 = p_2 c + \sqrt{m_e^2 c^4 + p_e^2 c^2} \]

\[\Delta \lambda = \frac{h}{m_e c} \left(1 - \cos \theta \right) \]

→ Electronic properties in condensed matter
→ Imaging
Absorption of a photon by an atom

• Energy transferred to an e^- which is excited to an empty upper state.
• Absorption varies as E^{-3} and Z^4.
• Leaves the atom in an excited state.
• Most frequently, the e^- will be expelled from the atom
 → Photoelectric effect
 → Fluorescence or non-radiative de-excitation (Auger).
Photoelectric effect, Einstein 1905

- Photon of energy $h\nu$ transfers energy and momentum to the system (atom, solid).
- For core levels of atoms, “chemical shifts” \rightarrow chemical environment. $KE = h\nu - \Delta E - e\phi$, “work function”.
- In solids, energy and momentum transfered to electrons. Conservation of \parallel component of momentum \rightarrow band structure if both kinetic energy and angle are measured (Angle Resolved Photoemission Spectroscopy, ARPES).
- Photoelectrons lose energy in matter (collisions with the electrons of the other atoms \rightarrow secondary electrons are produced. The probability of not suffering an inelastic collision after travelling a distance x in matter (solid, gases) is $\exp(-x/\lambda)$ where λ is the inelastic mean free path \rightarrow Varying the photon energy allows depth profiling.

Inelastic Mean Free Path (IMFP).
M. P. Seah and W. A. Dench, Surface and Interface Analysis, VOL. 1, 2 (1979).

Fluorescence is characteristic of the atom

Lifetime of excited states \sim fs.

In 1fs, the light travels $10^{-15} \times 3.10^8 = 300nm \gg \lambda \rightarrow$ incoherent process.
Quantum Description: Fermi’s Golden Rule

Transition probability from an initial state \(|i\rangle \) to a final state \(|f\rangle \) per unit time (second order):

\[
w = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}_{int} | i \rangle + \sum_n \frac{\langle f | \mathcal{H}_{int} | n \rangle \langle n | \mathcal{H}_{int} | i \rangle}{E_i - E_n} \right|^2 \delta(E_f - E_i)
\]

\(|i\rangle = |a, k\lambda \rangle \), \(|f\rangle = |b, k'\lambda' \rangle \), \(E_i = E_a + \hbar \omega_k \), \(E_f = E_a + \hbar \omega_k \)

\(\mathcal{H}_{int} \) interaction Hamiltonian, \(\langle f | W | i \rangle \) Transition matrix element.

First term: Thomson scattering, non-resonant magnetic scattering.
Second term: Anomalous scattering, resonant magnetic scattering.

\[
\mathcal{H}_{int} = \sum_{i=1}^{N} \frac{e}{m} \mathbf{A}(r_i) \cdot \mathbf{p} + \frac{e^2}{2m} \mathbf{A}^2(r_i) + \ldots
\]

\(\mathbf{A} \) vector potential.

\[
\mathbf{A} \propto a \exp(ik \cdot \mathbf{r}) + a^\dagger \exp(-ik \cdot \mathbf{r})
\]

Creation and annihilation of photons.
EXAFS and NEXAFS

\[
\frac{d^2\sigma}{d\Omega dE} = w\rho(E_f)/I_0
\]

\(\rho(E_f)\) density of final states.

CsNi[Cr(CN)_6], Ni K edge
V. Briois et al., Actualité Chimique 3, 31 (2000)

Empty states

- Pre-edge: first empty levels.

NEXAFS: Near Edge X-ray Absorption Fine Structure (≡ XANES: X-ray Absorption Near Edge Structure)
 - Local environment and electronic structure

EXAFS: Extended X-Ray Absorption Fine Structure \((h\nu - E \gtrsim 50\text{eV})\)
 - The wave corresponding to the photoelectron is diffracted by neighboring atoms → local structure.
 - \(k = \sqrt{2m/\hbar^2} \times (E - E_0)\)
 - \(\chi(k) = \sum_j N_j f_j(k) \exp(-2k^2\sigma^2_j) \frac{1}{kR^2_j} \sin(2kR_j + \delta_j(k))\)
Resonant Inelastic X-ray Scattering (RIXS)

$$\omega = \frac{2\pi}{\hbar} \left| \langle f | H_{\text{int}} | i \rangle + \sum_n \frac{\langle f | H_{\text{int}} | n \rangle \langle n | H_{\text{int}} | i \rangle}{E_i - E_n} \right|^2 \delta(E_f - E_i)$$

- Resonant process if E_n energy level of the system.
- Conservation of energy and momentum \rightarrow excitations can be investigated.
- X-rays with $p = E/c$ carry much more momentum than visible photons or neutrons with $p = \sqrt{2mE}$ \rightarrow wide range of momentum transfer possible.
- Element and orbital specific.
- Bulk sensitive.
- Good energy resolution as it is not affected by the core level short lifetime.

E. Pavarini, E. Koch, J. van den Brink, and G. Sawatzky (eds.)
Quantum Materials: Experiments and Theory Modeling and Simulation Vol. 6,
Forschungszentrum Jülich, 2016
Energy of neutrons can be measured by analyzer crystals in “Triple axis” instruments as x-rays or time-of-flight and spin-echo.

- Polarized neutrons. Spins precess around magnetic fields with the Larmor frequency: \(\frac{ds}{dt} = \gamma s \times B \).
- \(\omega_L = \gamma B = (g_n\mu_N/\hbar)B = -3.826(e/2m_p)B = 183.3 \times 10^6 B(T) \).
- For elastic scattering, precession after scattering cancels precession before scattering.
- If the neutron changes energy, the precession phases will be different.
- \(\phi = \omega_L t = \gamma Bd/v; \delta\phi = \omega_L t \approx \gamma Bd\delta v/v^2 \approx \gamma Bd\hbar\omega/(mv^3) \).
- 100s of ns → investigation of slow dynamics, e.g. in soft matter. Equivalently, highest energy resolution (neV).
Thank you!

Questions? jean.daillant@synchrotron-soleil.fr